10 resultados para CYANOBACTERIAL PEPTIDES

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the blood of Antarctic notothenioid and Arctic gadiform fishes, freezing is inhibited by antifreeze glycopeptide macromolecules (AFGP). These antifreeze molecules are built up of repeating tripeptide units (Ala-Ala-Thr)n, to which the disaccharide fl-D-galactosyl-(1->3)a-N-acetyl-D-galactosamine is linked through the hydroxyl oxygen of the threonyl residue. Species of Liparididae, Zoarcidae, Cottidae and Pleuronectidae synthezise only unglycosylated antifreeze peptides (AFP). It could be demonstrated for the Antarctic silverfish Pleuragramma antarcticum that the synthesis of AFGP is not constitutive but rather regulated by water temperature. Moreover a novel glycopeptid was isolated and characterised from P. antarcticum, the Pleuragramma-antifreeze glycopeptid (PAGP). The level of antifreeze concentration was dependent on the ambient water temperature, the depth of distribution, the life cycle and the evolution of the species. Surprisingly, detectable AFGPs in perciform fish of the Antarctic and gadiform fish of the Arctic and Antarctic could illustrate, that before the continental drift occurred a precursor glycopeptid existed, and that the existence of freezing resistance in some species reflects the past glaciation. The wide distribution and high heterogeneity of AFPs point to the assumption that these peptides are results of cold shock stress responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fine-scale depth distribution of major carbon pools and their stable carbon isotopic signatures (d13C) were determined in a cyanobacterial mat (Salin-de-Giraud, Camargue, France) to study early diagenetic alterations and the carbon preservation potential in hypersaline mat ecosystems. Particular emphasis was placed on the geochemical role of extracellular polymeric substances (EPS). Total carbon (Ctot), organic carbon (Corg), total nitrogen (Ntot), total hydrolysable amino acids (THAA), carbohydrates, cyanobacteria-derived hydrocarbons (8-methylhexadecane, n-heptadec-5-ene, n-heptadecane) and EPS showed highest concentrations in the top millimetre of the mat and decreased with depth. The hydrocarbons attributed to cyanobacteria showed the strongest decrease in concentration with depth. This correlated well with the depth profiles of oxygenic photosynthesis and oxygen, which were detected in the top 0.6 and 1.05 mm, respectively, at a high down-welling irradiance (1441 µmol photons m**-2 s**-1). At depths beneath the surface layer, the Corg was composed mainly of amino acids and carbohydrates. A resistance towards microbial degradation could have resulted from interactions with diverse functional groups present in biopolymers (EPS) and with minerals deposited in the mat. A 13C enrichment with depth for the total carbon pool (Ctot) was observed, with d13C values ranging from -16.3 permil at the surface to -11.3 permil at 9-10 mm depth. Total lipids depicted a d13C value of -17.2 permil in the top millimetre and then became depleted in 13C with depth (-21.7 to -23.3 permil). The d13C value of EPS varied only slightly with depth (-16.1 to -17.3 permil) and closely followed the d13C value of Corg at depths beneath 4 mm. The EPS represents an organic carbon pool of preservation potential during early stages of diagenesis in recent cyanobacterial mats as a result of a variety of possible interactions. Their analyses might improve our understanding of fossilized microbial remains from mat ecosystems.